Skip to main content

Deciphering userAccountControl

There’s been a lot of good information on userAccountControl (UAC) over the years. I was trying to explain a coworker about how it works which got me really thinking about it. I thought I’d try to share my findings with you in case you have a similar interest in learning it.

 

WHAT IS USER ACCOUNT CONTROL?

Let me first describe UAC. The simplest definition, in my opinion, would be to say that it’s a composite status of an object. (Let’s talk about user objects specifically.) A user object can be a variety of things -- disabled, enabled, locked, password expired, etc -- which when the integer value that’s stored in UAC is broken down, represents them. That’s why the account options are multi-select, I guess. :-)

image

Note that UAC is a 32-bit value. Anyway, this is the LDAP attribute where Active Directory stores the various states of your user account. How many different states can a user account be in, you might be wondering? It’s documented in quite a few places, actually (and now here.)

image

(Sorry about the screenshot. I had ALL THE INTENTION in the world to actually make it copy/paste, but translations going into Live Writer wasn’t being my friend. I linked it to the article with the values though. :) One last note, if you look at the flag name, it’s pretty clear that not all of those states actually apply to user objects.)

 

INTRODUCING… OUR EXAMPLE

Let’s make this practical and figure out what we’re looking at. Suppose you were goofing around running queries looking at UAC and found an account of interest. The account has a value of 66048. If I run a bitwise AND against it based on the values in the above table, it breaks down into 65536 and 512.

Go on, check my math. 65536 + 512 = 66048.

I transposed the table above to make it easier to look at. Basically, 66048 translates to a normal account with a password that never expires. That makes sense so far right?

image

 

THE BINARY VIEW

When you convert 66048, you get the binary equivalent of 10000001000000000. If you look at the table above, there are definitely values that are missing -- like 1024. If we add those values back in and overlay our binary version of the UAC value, the 1s lay right over the state. Cool, huh?

image

 

BITWISE OPERATORS

I mentioned using bitwise AND earlier to figure out what UAC 66048 was composed of. I’ll get into that in my next post since you are probably still waking up from reading this one.

Comments

Popular posts from this blog

using preloadpkgonsite.exe to stage compressed copies to child site distribution points

UPDATE: john marcum sent me a kind email to let me know about a problem he ran into with preloadpkgonsite.exe in the new SCCM Toolkit V2 where under certain conditions, packages will not uncompress.  if you are using the v2 toolkit, PLEASE read this blog post before proceeding.   here’s a scenario that came up on the mssms@lists.myitforum.com mailing list. when confronted with a situation of large packages and wan links, it’s generally best to get the data to the other location without going over the wire. in this case, 75gb. :/ the “how” you get the files there is really not the most important thing to worry about. once they’re there and moved to the appropriate location, preloadpkgonsite.exe is required to install the compressed source files. once done, a status message goes back to the parent server which should stop the upstream server from copying the package source files over the wan to the child site. anyway, if it’s a relatively small amount of packages, you can

How to Identify Applications Using Your Domain Controller

Problem Everyone has been through it. We've all had to retire or replace a domain controller at some point in our checkered collective experiences. While AD provides very intelligent high availability, some applications are just plain dumb. They do not observe site awareness or participate in locating a domain controller. All they want is the name or IP of one domain controller which gets hardcoded in a configuration file somewhere, deeply embedded in some file folder or setting that you are never going to find. How do you look at a DC and decide which applications might be doing it? Packet trace? Logs? Shut it down and wait for screaming? It seems very tedious and nearly impossible. Potential Solution Obviously I wouldn't even bother posting this if I hadn't run across something interesting. :) I ran across something in draftcalled Domain Controller Isolation. Since it's in draft, I don't know that it's published yet. HOWEVER, the concept is based off

sccm: content hash fails to match

back in 2008, I wrote up a little thing about how distribution manager fails to send a package to a distribution point . even though a lot of what I wrote that for was the failure of packages to get delivered to child sites, the result was pretty much the same. when the client tries to run the advertisement with an old package, the result was a failure because of content mismatch. I went through an ordeal recently capturing these exact kinds of failures and corrected quite a number of problems with these packages. the resulting blog post is my effort to capture how these problems were resolved. if nothing else, it's a basic checklist of things you can use.   DETECTION status messages take a look at your status messages. this has to be the easiest way to determine where these problems exist. unfortunately, it requires that a client is already experiencing problems. there are client logs you can examine as well such as cas, but I wasn't even sure I was going to have enough m